By Topic

Codes for iterative decoding from partial geometries

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Johnson, S.J. ; Nat. ICT Australia, Sydney, NSW, Australia ; Weller, Steven R.

This paper develops codes suitable for iterative decoding using the sum-product algorithm. By considering a large class of combinatorial structures, known as partial geometries, we are able to define classes of low-density parity-check (LDPC) codes, which include several previously known families of codes as special cases. The existing range of algebraic LDPC codes is limited, so the new families of codes obtained by generalizing to partial geometries significantly increase the range of choice of available code lengths and rates. We derive bounds on minimum distance, rank, and girth for all the codes from partial geometries, and present constructions and performance results for the classes of partial geometries which have not previously been proposed for use with iterative decoding. We show that these new codes can achieve improved error-correction performance over randomly constructed LDPC codes and, in some cases, achieve this with a significant decrease in decoding complexity.

Published in:

Communications, IEEE Transactions on  (Volume:52 ,  Issue: 2 )