By Topic

A 2.4-GHz ring-oscillator-based CMOS frequency synthesizer with a fractional divider dual-PLL architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhinian Shu ; Synopsys Mix-Signal IP Group, Mississauga, Ont., Canada ; Ka Lok Lee ; B. H. Leung

A 2.4-GHz frequency synthesizer was designed that uses a fractional divider to drive a dual-phase-locked-loop (PLL) structure, with both PLLs using only on-chip ring oscillators. The first-stage narrow-band PLL acts as a spur filter while the second-stage wide-band PLL suppresses VCO phase noise so that simultaneous suppression of phase noise and spur is achieved. A new low-power, low-noise, low-frequency ring oscillator is designed for this narrow-band PLL. The chip was designed in 0.35-μm CMOS technology and achieves a phase noise of -97 dBc/Hz at 1-MHz offset and spurs of -55 dBc. The chip's output frequency varies from 2.4 to 2.5 GHz; the chip consumes 15 mA from a 3.3-V supply and occupies 3.7 mm°.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:39 ,  Issue: 3 )