By Topic

Extraction of left ventricular contours from left ventriculograms by means of a neural edge detector

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Suzuki, K. ; Dept. of Radiol., Chicago Univ., IL, USA ; Horiba, I. ; Sugie, N. ; Nanki, M.

We propose a method for extracting the left ventricular (LV) contours from left ventriculograms by means of a neural edge detector (NED) in order to extract the contours which accord with those traced by a cardiologist. The NED is a supervised edge detector based on a modified multilayer neural network, and is trained by use of a modified back-propagation algorithm. The NED can acquire the function of a desired edge detector through training with a set of input images and the desired edges obtained from the contours traced by a cardiologist. The proposed contour-extraction method consists of 1) detection of "subjective edges" by use of the NED; 2) extraction of rough contours by use of low-pass filtering and edge enhancement; and 3) a contour-tracing method based on the contour candidates synthesized from the edges detected by the NED and the rough contours. Through experiments, it was shown that the proposed method was able to extract the contours in agreement with those traced by an experienced cardiologist, i.e., we achieved an average contour error of 6.2% for left ventriculograms at end-diastole and an average difference between the ejection fractions obtained from the manually traced contours and those obtained from the computer-extracted contours of 4.1%.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:23 ,  Issue: 3 )