Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Optimal design of clock trees for multigigahertz applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Escovar, R. ; Mentor Graphics Corp., St. Ismier, France ; Suaya, R.

With the onset of gigahertz frequencies on clocked digital systems, inductance effects become significant. We investigate appropriate regimes where signal propagation on an IC can be characterized as resulting from transmission line (TL) behavior. The signals propagate at a speed in the proximity of the speed of light in the medium. Our starting points are exact solutions in the time domain to the TL equations. A methodology to evaluate the feasible domains of physical and electrical variables that permit TL propagation is given. We develop fast and accurate computational methods for inductance and capacitance calculations. A general expression of the time delay in the presence of finite rise time and finite load capacitance for TL propagation is derived. We analyze a clock-synthesis method based on sandwiched balanced H-trees consistent with TL propagation. We find the feasible physical domains by solving iteratively two nonlinear equations in a space spanned by two continuous variables, with four parameters. To further assert its applicability we remove common assumptions such as the constancy of the electromagnetic parameters, zero rise time, and load capacitance. The spectrum of configurations is satisfactory at 130 nm and scales well into the 45-nm generation.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:23 ,  Issue: 3 )