By Topic

Optimal models of disjunctive logic programs: semantics, complexity, and computation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Leone, N. ; Dept. of Math., Calabria Univ., Rende, Italy ; Scarcello, F. ; Subrahmanian, V.S.

Almost all semantics for logic programs with negation identify a set, SEM(P), of models of program P, as the intended semantics of P, and any model M in this class is considered a possible meaning of P with regard to the semantics the user has in mind. Thus, for example, in the case of stable models [M. Gelfond et al., (1988)], choice models [D. Sacca et al., (1990)], answer sets [M. Gelfond et al., (1991)], etc., different possible models correspond to different ways of "completing" the incomplete information in the logic program. However, different end-users may have different ideas on which of these different models in SEM(P) is a reasonable one from their point of view. For instance, given SEM(P), user U1 may prefer model M1∈SEM(P) to model M2∈SEM(P) based on some evaluation criterion that she has. We develop a logic program semantics based on optimal models. This semantics does not add yet another semantics to the logic programming arena - it takes as input an existing semantics SEM(P) and a user-specified objective function Obj, and yields a new semantics Opt(P)_⊆ SEM(P) that realizes the objective function within the framework of preferred models identified already by SEM(P). Thus, the user who may or may not know anything about logic programming has considerable flexibility in making the system reflect her own objectives by building "on top" of existing semantics known to the system. In addition to the declarative semantics, we provide a complete complexity analysis and algorithms to compute optimal models under varied conditions when SEM(P) is the stable model semantics, the minimal models semantics, and the all-models semantics.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:16 ,  Issue: 4 )