By Topic

A support vector machine with a hybrid kernel and minimal Vapnik-Chervonenkis dimension

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ying Tan ; Dept. of Electron. Eng. & Inf. Sci., Univ. of Sci. & Technol. of China, Hefei, China ; Jun Wang

We present a mechanism to train support vector machines (SVMs) with a hybrid kernel and minimal Vapnik-Chervonenkis (VC) dimension. After describing the VC dimension of sets of separating hyperplanes in a high-dimensional feature space produced by a mapping related to kernels from the input space, we proposed an optimization criterion to design SVMs by minimizing the upper bound of the VC dimension. This method realizes a structural risk minimization and utilizes a flexible kernel function such that a superior generalization over test data can be obtained. In order to obtain a flexible kernel function, we develop a hybrid kernel function and a sufficient condition to be an admissible Mercer kernel based on common Mercer kernels (polynomial, radial basis function, two-layer neural network, etc.). The nonnegative combination coefficients and parameters of the hybrid kernel are determined subject to the minimal upper bound of the VC dimension of the learning machine. The use of the hybrid kernel results in a better performance than those with a single common kernel. Experimental results are discussed to illustrate the proposed method and show that the SVM with the hybrid kernel outperforms that with a single common kernel in terms of generalization power.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:16 ,  Issue: 4 )