By Topic

Discovery of context-specific ranking functions for effective information retrieval using genetic programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fan, W. ; Dept. of Accounting & Inf. Syst., Virginia Polytech. Inst. & State Univ., Blacksburg, VA, USA ; Gordon, M.D. ; Praveen Pathak

The Internet and corporate intranets have brought a lot of information. People usually resort to search engines to find required information. However, these systems tend to use only one fixed ranking strategy regardless of the contexts. This poses serious performance problems when characteristics of different users, queries, and text collections are taken into account. We argue that the ranking strategy should be context specific and we propose a , new systematic method that can automatically generate ranking strategies for different contexts based on genetic programming (GP). The new method was tested on TREC data and the results are very promising.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:16 ,  Issue: 4 )