By Topic

Robust Kalman filtering via Krein space estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lee, T.H. ; Dept. of Electr. & Electron. Eng., Yonsei Univ., Seoul, South Korea ; Ra, W.-S. ; Yoon, T.S. ; Park, J.B.

A robust Kalman filter is proposed for the discrete-time system with norm-bounded parametric uncertainties. The uncertainties are described by the energy bound constraint, i.e. the sum quadratic constraint (SQC). It is shown that the SQC can be converted into an indefinite quadratic cost function to be minimised in the Krein space, and it is found that the Krein space Kalman filter is a solution of the minimisation problem. After introducing a Krein space state-space model, which includes the uncertainty, one can easily write a robust version of the Krein space Kalman filter by modifying the measurement matrix and the variance of measurement noises in the original Krein space Kalman filter. Since the resulting robust Kalman filter has the same recursive structure as a conventional Kalman filter, a robust filtering scheme can be readily designed using the proposed method. A numerical example demonstrates that the proposed filter achieves robustness against parameter variation and improvement in performance when compared with a conventional Kalman filter and an existing robust Kalman filter, respectively.

Published in:

Control Theory and Applications, IEE Proceedings -  (Volume:151 ,  Issue: 1 )