By Topic

A graph-based approach for timing analysis and refinement of OPS5 knowledge-based systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cheng, A.M.K. ; Dept. of Comput. Sci., Houston Univ., TX, USA ; Tsai, H.-Y.

We examine the problem of predicting the timing behavior of knowledge-based systems for real-time applications. In particular, we describe a suite of tools which analyze OPS5 programs to understand their timing properties. First, a graphical representation of an OPS5 program is defined and evaluated. This graph represents the logical control flows of an OPS5 program. Most of our analysis is based on this data structure. Second, we describe a novel tool which verifies that an OPS5 program can terminate in finite time. If the termination of the OPS5 program is not expected, the "culprit" conditions are detected. These conditions are then used to correct the problem by adding extra rules to the original program. Third, another tool is introduced to aid timing analysis of OPS5 programs. This tool generates a set of test data which maximize the program execution time. Other functions are also provided to facilitate the timing analysis.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:16 ,  Issue: 2 )