Cart (Loading....) | Create Account
Close category search window

Synthetic aperture sonar for seabed imaging: relative merits of narrow-band and wide-band approached

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chatillon, J. ; Inst. de Chimie et de Phys. Ind. de Lyon, France ; Bouhier, M.-E. ; Zakharia, M.E.

The advantages of using wideband sonar systems in underwater acoustical imaging by means of synthetic aperture (side-looking) sonars are described and illustrated through simulation examples. The simulations are conducted for two cases of sonar platform motion: perfect trajectory and disturbed trajectory. Several schemes used for wideband synthetic aperture processing are investigated and their relative merits (resolution and complexity) in the case of both disturbed and perfect trajectories are evaluated. Quantitative image evaluation is initially achieved through the evaluation of performance as regards resolution. The problems involved in the definition of the image quality are discussed

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:17 ,  Issue: 1 )

Date of Publication:

Jan 1992

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.