By Topic

New direct design method for weighted order statistic filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Marshall, S. ; Dept. of Electron. & Electr. Eng., Univ. of Strathclyde, Glasgow, UK

The paper describes a new method for the design of optimum weighted order statistic (WOS) filters. WOS filters form a general class of increasing filters which generate an output based on the weighted rank ordering of the samples within the filter window. They include the median, weighted median, stack filters and morphological filters with flat structuring elements. This new design method is applicable to all of these operators. It has the advantage over existing techniques in that the filter weights are calculated directly from the training set observations and require no iteration. The method makes an assumption about the training set observations known as the weight monotonic property. It tests if the training set corruption is suitable for correction with an increasing filter. Where the assumption does not hold then a WOS filter should not be used for that training set. The paper includes two examples to demonstrate the design method and a justification for a training set approach to image restoration problems. Other benefits arising from the new design method are outlined in the paper. These include a method to determine the minimum MAE possible for a given training set and filter window.

Published in:

Vision, Image and Signal Processing, IEE Proceedings -  (Volume:151 ,  Issue: 1 )