Cart (Loading....) | Create Account
Close category search window

Substrate-strained silicon technology: process integration [CMOS technology]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

16 Author(s)
Wang, H.C.-H. ; Taiwan Semicond. Manuf. Co., Hsin-Chu, Taiwan ; Wang, Y.-P. ; Chen, S.-J. ; Ge, C.-H.
more authors

We demonstrate a 60 nm gate length substrate-strained Si CMOS technology and the fastest reported ring oscillator speed of 6.5 ps at 1.2 V operation. The largest enhancement (15%) in I/sub on/-I/sub off/ characteristics without correction for self-heating effects is also reported. The substrate-strained Si process is optimized to enhance manufacturability and circumvent difficulties associated with the integration of the strained Si/SiGe heterostructure. We also report a phenomenon responsible for increased the off state leakage in strained Si devices and a way to suppress it. Surmounting key integration challenges faced by the Si/SiGe heterostructure is critical for its introduction as a manufacturable process.

Published in:

Electron Devices Meeting, 2003. IEDM '03 Technical Digest. IEEE International

Date of Conference:

8-10 Dec. 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.