By Topic

Vector-extrapolated fast maximum likelihood estimation algorithms for emission tomography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rajeevan, N. ; Indian Inst. of Sci., Bangalore, India ; Rajgopal, K. ; Krishna, G.

A new class of fast maximum-likelihood estimation (MLE) algorithms for emission computed tomography (ECT) is developed. In these cyclic iterative algorithms, vector extrapolation techniques are integrated with the iterations in gradient-based MLE algorithms, with the objective of accelerating the convergence of the base iterations. This results in a substantial reduction in the effective number of base iterations required for obtaining an emission density estimate of specified quality. The mathematical theory behind the minimal polynomial and reduced rank vector extrapolation techniques, in the context of emission tomography, is presented. These extrapolation techniques are implemented in a positron emission tomography system. The new algorithms are evaluated using computer experiments, with measurements taken from simulated phantoms. It is shown that, with minimal additional computations, the proposed approach results in substantial improvement in reconstruction

Published in:

Medical Imaging, IEEE Transactions on  (Volume:11 ,  Issue: 1 )