By Topic

Fault-tolerant deployment of embedded software for cost-sensitive real-time feedback-control applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pinello, C. ; Electr. Eng. & Comput. Sci. Dept., California Univ., Berkeley, CA, USA ; Carloni, L.P. ; Sangiovanni-Vincentelli, A.L.

Designing cost-sensitive real-time control systems for safety-critical applications requires a careful analysis of the cost/coverage trade-offs of fault-tolerant solutions. This further complicates the difficult task of deploying the embedded software that implements the control algorithms on the execution platform that is often distributed around the plant (as it is typical, for instance, in automotive applications). We propose a synthesis-based design methodology that relieves the designers from the burden of specifying detailed mechanisms for addressing platform faults, while involving them in the definition of the overall fault-tolerance strategy. Thus, they can focus on addressing plant faults within their control algorithms, selecting the best components for the execution platform, and defining an accurate fault model. Our approach is centered on a new model of computation, fault tolerant data flows (FTDF), that enables the integration of formal validation techniques.

Published in:

Design, Automation and Test in Europe Conference and Exhibition, 2004. Proceedings  (Volume:2 )

Date of Conference:

16-20 Feb. 2004