Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Microbenchmark performance comparison of high-speed cluster interconnects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Liu, J. ; Ohio State Univ., Columbus, OH, USA ; Balasubramanian Chandrasekaran ; Yu, W. ; Wu, J.
more authors

Today's distributed and high-performance applications require high computational power and high communication performance. Recently, the computational power of commodity PCs has doubled about every 18 months. At the same time, network interconnects that provide very low latency and very high bandwidth are also emerging. This is a promising trend in building high-performance computing environments by clustering - combining the computational power of commodity PCs with the communication performance of high-speed network interconnects. There are several network interconnects that provide low latency and high bandwidth. Traditionally, researchers have used simple microbenchmarks, such as latency and bandwidth tests, to characterize a network interconnects communication performance. Later, they proposed more sophisticated models such as LogP. However, these tests and models focus on general parallel computing systems and do not address many features present in these emerging commercial interconnects. Another way to evaluate different network interconnects is to use real-world applications. However, real applications usually run on top of a middleware layer such as the message passing interface (MPI). Our results show that to gain more insight into the performance characteristics of these interconnects, it is important to go beyond simple tests such as those for latency and bandwidth. In future, we plan to expand our microbenchmark suite to include more tests and more interconnects.

Published in:

Micro, IEEE  (Volume:24 ,  Issue: 1 )