By Topic

A geometric theorem for network design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
M. Franceschetti ; Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA ; M. Cook ; J. Bruck

Consider an infinite square grid G. How many discs of given radius r, centered at the vertices of G, are required, in the worst case, to completely cover an arbitrary disc of radius r placed on the plane? We show that this number is an integer in the set {3,4,5,6} whose value depends on the ratio of r to the grid spacing. One application of this result is to design facility location algorithms with constant approximation factors. Another application is to determine if a grid network design, where facilities are placed on a regular grid in a way that each potential customer is within a reasonably small radius around the facility, is cost effective in comparison to a nongrid design. This can be relevant to determine a cost effective design for base station placement in a wireless network

Published in:

IEEE Transactions on Computers  (Volume:53 ,  Issue: 4 )