By Topic

Space-time bit-interleaved coded modulation for OFDM systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Inkyu Lee ; Dept. of Commun. Eng., Korea Univ., Seoul, South Korea ; Chan, A.M. ; Sundberg, C.-E.W.

Space-time coding techniques significantly improve transmission efficiency in radio channels by using multiple transmit and/or receive antennas and coordination of the signaling over these antennas. Bit-interleaved coded modulation gives good diversity gains with higher order modulation schemes using well-known binary convolutional codes on a single transmit and receive antenna link. By using orthogonal frequency division multiplexing (OFDM), wideband transmission can be achieved over frequency-selective fading radio channels without adaptive equalizers. In this correspondence, we combine these three ideas into a family of flexible space-time coding methods. The pairwise error probability is analyzed based on the correlated fading assumption. Near-optimum iterative decoders are evaluated by means of simulations for slowly varying wireless channels. Theoretical evaluation of the achievable degree of diversity is also presented. Significant performance gains over the wireless local area network (LAN) 802.11a standard system are reported.

Published in:

Signal Processing, IEEE Transactions on  (Volume:52 ,  Issue: 3 )