By Topic

Realizable linear and decision feedback equalizers: properties and connections

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Lopez-Valcarce, R. ; Dept. of Signal Theor. & Commun., Univ. of Vigo, Spain

Recently, there has been renewed interest in the use of infinite impulse response (IIR) linear equalizers (LEs) for digital communication channels as a means for both improving performance and blindly initializing decision feedback structures (DFEs). Theoretical justification for such an approach is usually given assuming unconstrained filters, which are not causal and therefore not implementable in practice. We present an analysis of realizable (i.e., causal, stable, and of finite degree) minimum mean square error (MMSE) equalizers for single-input multiple-output channels, both in the LE and DFE cases, focusing on their structures and filter orders, as well as the connections between them. The DFE resulting from rearranging the MMSE LE within a decision feedback loop is given special attention. It is shown that although this DFE does not in general coincide with the MMSE DFE, it still enjoys certain optimality conditions. The main tools employed are the Wiener theory of minimum variance estimation and Kalman filtering theory, which show interesting properties of the MMSE equalizers not revealed by previous polynomial approaches.

Published in:

Signal Processing, IEEE Transactions on  (Volume:52 ,  Issue: 3 )