By Topic

Data-aided and blind stochastic gradient algorithms for widely linear MMSE MAI suppression for DS-CDMA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Schober, R. ; Dept. of Electr. & Comput. Eng., Univ. of British Columbia, Vancouver, BC, Canada ; Gerstacker, W.H. ; Lampe, L.H.-J.

In this paper, three novel stochastic gradient algorithms for adjustment of the widely linear (WL) minimum mean-squared error (MMSE) filter for multiple access interference (MAI) suppression for direct-sequence code-division multiple access (DS-CDMA) are introduced and analyzed. In particular, we derive a data-aided WL least-mean-square (LMS) algorithm, a blind WL minimum-output-energy (MOE) algorithm, and a WL blind LMS (BLMS) algorithm. We give analytical expressions for the steady-state signal-to-interference-plus-noise ratios (SINRs) of the proposed WL algorithms, and we also investigate their speed of convergence. Wherever possible, comparisons with the corresponding linear adaptive algorithms are made. Both analytical considerations and simulations show, in good agreement, the superiority of the novel WL adaptive algorithms. Nevertheless, all proposed WL algorithms require a slightly lower computational complexity than their linear counterparts.

Published in:

Signal Processing, IEEE Transactions on  (Volume:52 ,  Issue: 3 )