By Topic

Optimal minimum distance-based precoder for MIMO spatial multiplexing systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Collin, L. ; LEST-UMR CNRS, Brest, France ; Berder, O. ; Rostaing, P. ; Burel, G.

We describe a new precoder based on optimization of the minimum Euclidean distance dmin between signal points at the receiver side and for use in multiple-input multiple-output (MIMO) spatial multiplexing systems. Assuming that channel state information (CSI) can be made available at the transmitter, the three steps ( noise whitening, channel diagonalization and dimension reduction), which are currently used in investigations on MIMO systems, are performed. Thanks to this representation, an optimal dmin precoder is derived in the case of two different transmitted data streams. For quadrature phase-shift keying (QPSK) modulation, a numerical approach shows that the precoder design depends on the channel characteristics. Comparisons with maximum signal-to-noise ratio (SNR) strategy and other precoders based on criteria, such as water-filling (WF), minimum mean square error (MMSE), and maximization of the minimum singular value of the global channel matrix, are performed to illustrate the significant bit-error-rate (BER) improvement of the proposed precoder.

Published in:

Signal Processing, IEEE Transactions on  (Volume:52 ,  Issue: 3 )