By Topic

A fused hidden Markov model with application to bimodal speech processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Pan, Hao ; Sharp Labs. of America Inc., Camas, WA, USA ; Levinson, S.E. ; Huang, T.S. ; Zhi-Pei Liang

This paper presents a novel fused hidden Markov model (fused HMM) for integrating tightly coupled time series, such as audio and visual features of speech. In this model, the time series are first modeled by two conventional HMMs separately. The resulting HMMs are then fused together using a probabilistic fusion model, which is optimal according to the maximum entropy principle and a maximum mutual information criterion. Simulations and bimodal speaker verification experiments show that the proposed model can significantly reduce the recognition errors in noiseless or noisy environments.

Published in:

Signal Processing, IEEE Transactions on  (Volume:52 ,  Issue: 3 )