By Topic

FGA effects on plasma-induced damage: beyond the appearances

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cellere, G. ; Dept. of Inf., Padova Univ., Italy ; Paccagnella, A. ; Valentini, M.G.

Indispensable for manufacturing of modern CMOS technologies, plasma processes result in charging of dielectric surfaces, thus damaging the gate oxide. A forming gas annealing (FGA) step is usually done at the end of the process to passivate and/or recover this damage. We investigated this problem on thin (3.5 nm) gate oxides by using a series of stress-anneal-stress steps on devices with different level of latent damage. Our results confirm that FGA actually reduces the number of traps responsible for stress-induced leakage current (SILC) or for microbreakdown in ultrathin gate oxides, but also put in evidence that defects induced by plasma treatments and those generated by way of electrical stress feature different anneal kinetics. Further, we have identified two categories of dielectric breakdown events, whose characteristics are strongly modified by the FGA step.

Published in:

Electron Devices, IEEE Transactions on  (Volume:51 ,  Issue: 3 )