Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

CMOS active-LC bandpass filters with coupled-inductor Q-enhancement and center frequency tuning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bantas, S. ; Sch. of Electr. & Comput. Eng., Nat. Tech. Univ. of Athens, Greece ; Koutsoyannopoulos, Y.

A novel CMOS circuit for obtaining a bandpass response from a triple-coupled-inductor arrangement is presented, featuring Q-enhancement and center frequency tuning by means of vector-modulating a current flowing through one of the coupled inductors. A 0.35-μm CMOS LC filter prototype employing the technique has been fabricated and exhibits a center frequency tuning range of 11% around 1 GHz and Q values up to 180. The input 1-dB compression point is -13 dBm with Q set to 20 and a power consumption of 12.2 mW. Additionally, an input impedance matching scheme around a spiral transformer is presented, which tracks the center frequency of the filter. The active-LC approach can be applied to higher order filter responses and find applications in tunable building blocks for agile RF front ends and multistandard radios.

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:51 ,  Issue: 2 )