By Topic

Optimization of electrostatic separation Processes using response surface modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dascalescu, L. ; Univ. Inst. of Technol., Angouleme, France ; Tilmatine, A. ; Aman, F. ; Mihailescu, M.

The efficiency of electrostatic separation processes depends on a multitude of factors, including the characteristics of the granular mixtures to be sorted, the feed rate, the configuration of the electrode system, the applied high voltage, and the environmental conditions. The possibility of optimizing the operation of industrial electrostatic separators using rather simple computed-assisted experimental design techniques has already been demonstrated. The aim of the present work is to analyze the peculiarities of application of a more sophisticated group of response surface experimental design techniques that make use of quadratic functions for modeling the electrostatic separation process. One unique contribution to this work is to consider the economic value of the process in addition to the technical result. The 11 electrostatic separation tests, corresponding to a central composite design, were carried out on samples of chopped electric wire wastes. The CARPCO laboratory roll-type electrostatic separator employed for this study enabled a rigorous control of two factors: the applied high-voltage level and the speed of the rotating roll electrode. The objective was to maximize the benefits from the recycling of both constituents of the binary copper-polyvinyl chloride granular mixture. The optimum operating conditions computed with the quadratic model derived from the experimental results were in good agreement with the data of pilot-plant tests. Thus, the highest extraction of useful materials was obtained at high voltage and low speed, while the optimum conditions for greatest economic value were found to be high voltage and high speed. The response surface methodology can be easily applied to most of the industrial applications of electrostatic separation technologies.

Published in:

Industry Applications, IEEE Transactions on  (Volume:40 ,  Issue: 1 )