By Topic

Grounding and ground fault protection of multiple generator installations on medium-voltage industrial and commercial power systems - Part 3: Protection Methods Working Group Report

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

17 Author(s)
Pillai, P. ; Kellogg Brown & Root, Houston, TX, USA ; Bailey, B.G. ; Bowen, J. ; Dalke, G.
more authors

This paper discusses typical grounding practices and ground fault protection methods for medium-voltage generator stators, highlighting their merits and drawbacks. Particular attention is given to applications of multiple generators connected to a single bus. The paper also provides an overview of the generator damage mechanism during stator ground faults. Problem areas associated with each type of grounding are identified and solutions are discussed. The paper also provides a list of references on the topic. The paper is intended as a guide to aid engineers in selecting adequate grounding and ground fault protection schemes for medium-voltage industrial and commercial generators for new installations, for evaluating existing systems, and for future expansion of facilities, to minimize generator damage from stator ground faults. These topics are presented in four separate parts, Parts 1-4. Part 1 covers scope, introduction, user examples of stator ground failure, and theoretical basis for the problem. Part 2 discusses various grounding methods used in industrial applications. Part 3 describes protection methods for the various types of grounding and Part 4 provides a conclusion and bibliography of additional resource material.

Published in:

Industry Applications, IEEE Transactions on  (Volume:40 ,  Issue: 1 )