By Topic

A robust hybrid current control for permanent-magnet synchronous motor drive

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kadjoudj, M. ; Electr. Eng. Dept., Univ. of Batna, Algeria ; Benbouzid, M.E.H. ; Ghennai, C. ; Diallo, D.

Recently, the permanent-magnet synchronous motor (PMSM) has found widespread utilization in modern adjustable AC drives. This is achieved by using current-controlled voltage source inverter (VSI) systems. Because of its ease of implementation, fast current control response and inherent peak current-limiting capability, hysteresis current control is considered as the simplest technique used to control the motor currents for an AC machine. On the other hand, the ramp comparator controller has some advantages, such as limiting maximum inverter switching frequency to the carrier triangular waveform frequency and producing well-defined harmonics. In order to take advantage of the position features of both these two controllers, this paper presents the design and software implementation of a hybrid current controller. The proposed intelligent controller is a simultaneous combination and contribution of the hysteresis current controller and the ramp comparator. Comparisons using simulations on a 0.9-kW PMSM confirm that the proposed hybrid current controller gives better performance and has the advantage of conceptual simplicity. In particular, harmonic spectra of the stator current, obtained using a fast Fourier transform (FFT), are used for comparison purposes.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:19 ,  Issue: 1 )