By Topic

Complex autoregressive model for shape recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sekita, I. ; Electrotech. Lab., MITI, Ibaraki, Japan ; Kurita, T. ; Otsu, N.

A complex autoregressive model for invariant feature extraction to recognize arbitrary shapes on a plane is presented. A fast algorithm to calculate complex autoregressive coefficients and complex PARCOR coefficients of the model is also shown. The coefficients are invariant to rotation around the origin and to choice of the starting point in tracing a boundary. It is possible to make them invariant to scale and translation. Experimental results that the complicated shapes like nonconvex boundaries can be recognized in high accuracy, even in the low-order model. It is seen that the complex PARCOR coefficients tend to provide more accurate classification than the complex AR coefficients

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:14 ,  Issue: 4 )