By Topic

An algebraic approach to feature interactions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. R. Karinthi ; Dept. of Stat. & Comput. Sci., West Virginia Univ., Morgantown, WV, USA ; D. Nau

The various approaches proposed to provide communication between CAD systems and process planning systems share the major problem that, due to geometric interactions among features, there may be several equally valid sets of manufacturable features describing the same part, and different sets of features may differ in their manufacturability. Thus, to produce a good process plan-or, in some cases, any plan at ll-it may be necessary to interpret the part as a different set of features than the one initially obtained from the CAD model. This is addressed using an algebra of features. Given a set of features describing a machinable part, other equally valid interpretations of the part can be produced by performing operations in the algebra. This will enable automated process planning systems to examine these interpretations in order to see which one is most appropriate for use in manufacturing. The feature algebra has been implemented for a restricted domain and integrated with the Protosolid solid modeling system and the EFHA process planning system

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:14 ,  Issue: 4 )