By Topic

Approximation of sigmoid function and the derivative for hardware implementation of artificial neurons

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

A piecewise linear recursive approximation scheme is applied to the computation of the sigmoid function and its derivative in artificial neurons with learning capability. The scheme provides high approximation accuracy with very low memory requirements. The recursive nature of this method allows for the control of the rate accuracy/computation-delay just by modifying one parameter with no impact on the occupied area. The error analysis shows an accuracy comparable to or better than other reported piecewise linear approximation schemes. No multiplier is needed for a digital implementation of the sigmoid generator and only one memory word is required to store the parameter that optimises the approximation.

Published in:

IEE Proceedings - Circuits, Devices and Systems  (Volume:151 ,  Issue: 1 )