Cart (Loading....) | Create Account
Close category search window
 

Analysis of the error performance of trellis-coded modulations in Rayleigh-fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cavers, J.K. ; Sch. of Eng. Sci., Simon Fraser Univ., Burnaby, BC, Canada ; Ho, P.

This work presents an exact expression for the pairwise error event probability of trellis-coded modulation (TCM) transmitted over Rayleigh-fading channels. It includes phase shift keying (PSK) and multilevel quadrature amplitude modulation (QAM) codes, as well as coherent and partially coherent (e.g. differential, pilot tone, etc.) detection. Due to the form of the exact pairwise error event probabilities, this calculation technique cannot be used with the transfer function technique to obtain an upper (union) bound on the overall bit error probability. For this reason, the authors estimate the bit error probability by considering only a small number of short error events. Through simulations, they found that the estimation is usually very accurate at high signal-to-noise ratios but not as accurate at lower signal-to-noise ratios. They study several coded modulation schemes this way. Among the results are the fact that TCM provides significant improvement in the error floor when detected differentially, and an asymmetry in the pairwise error event probability for 16 QAM

Published in:

Communications, IEEE Transactions on  (Volume:40 ,  Issue: 1 )

Date of Publication:

Jan 1992

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.