By Topic

Digital transmission performance of standard analog filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
H. Leib ; Dept. of Electr. Eng., McGill Univ., Montreal, Que., Canada ; S. Pasupathy

This work analyzes the performances of Bessel, Gaussian, Butterworth, and Chebyshev (0.1-dB ripple) filters for synchronous baseband digital transmission. Numerical results showing the effects of system parameters such as signal rate, filter bandwidth, filter order, and pulse duty-cycle are presented. For rectangular inputs, linear phase filters perform better than those with nonlinear phase, from the viewpoint of the Nyquist 1 criterion. In terms of the Nyquist 2 criterion, linear phase filters perform better when the input duty-cycle is unity. For lower duty-cycles, there are symbol rate ranges over which nonlinear phase filters perform better. From the viewpoint of symbol time synchronization, the performances of the two types of filter are essentially the same. Linear phase filters are more robust to sampling clock jitter than nonlinear ones when the symbol rate is higher than the bandwidth. Furthermore, it is shown that for linear phase filters it is possible to increase the transmitting rate while keeping the filter bandwidth constant and with only a minor increase in degradation, by using low duty-cycle inputs

Published in:

IEEE Transactions on Communications  (Volume:40 ,  Issue: 1 )