By Topic

Consta-Abelian codes over Galois rings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kiran, T. ; Dept. of Electr. Commun. Eng., Indian Inst. of Sci., Bangalore, India ; Rajan, B.S.

We study n-length consta-Abelian codes (a generalization of the well-known Abelian codes and constacyclic codes) over Galois rings of characteristic pa, where n and p are coprime. A twisted discrete Fourier transform (DFT) is used to generalize transform domain results of Abelian and constacyclic codes, to consta-Abelian codes. Further, we characterize consta-Abelian codes invariant under two kinds of monomials, whose underlying permutations are effected by: i) multiplying the coordinates with a unit in the appropriate mixed-radix representation of the coordinate positions and ii) shifting the coordinates by t positions. All the codes studied here belong to the class of quasi-twisted codes which are known to contain some good codes. We show that the dual of a consta-Abelian code invariant under the two monomials is also a consta-Abelian code closed under both monomials.

Published in:

Information Theory, IEEE Transactions on  (Volume:50 ,  Issue: 2 )