By Topic

Observer based learning control for a class of nonlinear systems with time-varying parametric uncertainties

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jian-Xin Xu ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore ; Jing Xu

In this note, a new learning control approach, combined with state estimation, is developed to perform output tracking problems where the state information is not available. By virtue of the learning capability, the control mechanism is able to handle a class of rapid time-varying parametric uncertainties which are periodic and the only prior knowledge is the periodicity. Two classes of system nonlinearities are taken into account. The first class is the global Lipschitz continuous functions of the unknown state variables, and the second class is the local Lipschitz continuous functions of the accessible output variables. To facilitate the learning control design and property analysis, the Lyapunov-like energy function is employed, which allows the incorporation of any available system knowledge. Henceforth the new learning control approach widens the application scope comparing with the repetitive type learning control.

Published in:

Automatic Control, IEEE Transactions on  (Volume:49 ,  Issue: 2 )