Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

A computationally efficient multivariate maximum-entropy density estimation (MEDE) technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kouskoulas, Y. ; Radiat. Lab., Univ. of Michigan, Ann Arbor, MI, USA ; Pierce, L.E. ; Ulaby, F.T.

Density estimation is the process of taking a set of multivariate data and finding an estimate for the probability density function (pdf) that produced it. One approach for obtaining an accurate estimate of the true density f(x) is to use the polynomial-moment method with Boltzmann-Shannon entropy. Although rigorous mathematically, the method is difficult to implement in practice because the solution involves a large set of simultaneous nonlinear integral equations, one for each moment or joint moment constraint. Solutions available in the literature are generally not easily applicable to multivariate data, nor computationally efficient. In this paper, we take the functional form that was developed in this problem and apply pointwise estimates of the pdf as constraints. These pointwise estimates are transformed into basis coefficients for a set of Legendre polynomials. The procedure is mathematically similar to the multidimensional Fourier transform, although with different basis functions. We apply this technique, called the maximum-entropy density estimation (MEDE) technique, to a series of multivariate datasets.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:42 ,  Issue: 2 )