By Topic

70-GHz-spaced 40×42.7 Gb/s transpacific transmission over 9400 km using prefiltered CSRZ-DPSK signals, all-Raman repeaters, and symmetrically dispersion-managed fiber spans

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
T. Tsuritani ; KDDI R&D Labs. Inc., Saitama, Japan ; K. Ishida ; A. Agata ; K. Shimomura
more authors

70-GHz-spaced 40×42.7 Gb/s prefiltered carrier-suppressed return-to-zero differential phase-shift keying (CSRZ-DPSK) signals have been transmitted over transpacific distances for the first time, using all-Raman repeaters with two pump-wavelengths, dispersion-managed fiber commercially available in volume, and an ETDM receiver. In this paper, first, in order to enhance the spectral efficiency, the impact of bandlimitation to a CSRZ-DPSK signal was experimentally investigated in comparison to a conventional CSRZ-on-off-keying (OOK) signal, and we found that the bandlimitation tolerance of CSRZ-DPSK signal was smaller than that of CSRZ-OOK signal in back-to-back condition. We also confirmed that the prefiltering CSRZ-DPSK signal with up to 65 GHz bandlimitation potentially had better transmission performance than the prefiltered CSRZ-OOK signal. In addition, we found that, although the nonlinear transmission penalty was increased by bandlimitation, this penalty for CSRZ-DPSK signal was smaller than that for CSRZ-OOK signal. Through this study, long-term stability of the transmission performance was also evaluated with low-speed signal polarization scrambling without using any polarization mode dispersion (PMD) compensation.

Published in:

Journal of Lightwave Technology  (Volume:22 ,  Issue: 1 )