By Topic

A new methodology for the coordinated design of robust decentralized power system damping controllers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ramos, R.A. ; Univ. Estadual do Oeste do Parana, PR, Brazil ; Alberto, L.F.C. ; Bretas, N.G.

This paper presents the fundamentals and the algorithm of a new methodology for the design of robust power system damping controllers. The methodology provides controllers capable of fulfilling various practical requirements of the oscillations damping problem, which could not be simultaneously satisfied by the majority of the proposed robust approaches until now. The design procedure is based on a special formulation of the dynamic output feedback control problem, which is very well suited for damping controller design. With this formulation, the design problem (which is originally stated as a set of bilinear matrix inequalities) can be expressed directly in the form of linear matrix inequalities. Furthermore, the formulation allows the incorporation of decentralization constraints on the controller matrices, which are one of the practical requirements for power system damping controllers. Another practical requirement is satisfied with the use of the polytopic model (to ensure the robustness of the closed-loop system with respect to the variation of operating conditions). Moreover, the inclusion of a regional pole placement criterion, as the design objective, allows the specification of a minimum damping factor for all modes of the controlled system. The results show the controller is able to provide adequate damping for the oscillation modes of interest.

Published in:

Power Systems, IEEE Transactions on  (Volume:19 ,  Issue: 1 )