By Topic

An ordinal optimization theory-based algorithm for solving the optimal power flow problem with discrete control variables

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shin-Yeu Lin ; Dept. of Electr. & Control Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Yu-Chi Ho ; Ch'i-Hsin Lin

The optimal power flow (OPF) problem with discrete control variables is an NP-hard problem in its exact formulation. To cope with the immense computational-difficulty of this problem, we propose an ordinal optimization theory-based algorithm to solve for a good enough solution with high probability. Aiming for hard optimization problems, the ordinal optimization theory, in contrast to heuristic methods, guarantee to provide a top n% solution among all with probability more than 0.95. The approach of our ordinal optimization theory-based algorithm consists of three stages. First, select heuristically a large set of candidate solutions. Then, use a simplified model to select a subset of most promising solutions. Finally, evaluate the candidate promising-solutions of the reduced subset using the exact model. We have demonstrated the computational efficiency of our algorithm and the quality of the obtained solution by comparing with the competing methods and the conventional approach through simulations.

Published in:

IEEE Transactions on Power Systems  (Volume:19 ,  Issue: 1 )