By Topic

Support vector learning mechanism for fuzzy rule-based modeling: a new approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jung-Hsien Chiang ; Dept. of Comput. Sci. & Inf. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Pei-Yi Hao

This paper describes a fuzzy modeling framework based on support vector machine, a rule-based framework that explicitly characterizes the representation in fuzzy inference procedure. The support vector learning mechanism provides an architecture to extract support vectors for generating fuzzy IF-THEN rules from the training data set, and a method to describe the fuzzy system in terms of kernel functions. Thus, it has the inherent advantage that the model does not have to determine the number of rules in advance, and the overall fuzzy inference system can be represented as series expansion of fuzzy basis functions. The performance of the proposed approach is compared to other fuzzy rule-based modeling methods using four data sets.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:12 ,  Issue: 1 )