By Topic

Accurate modeling of monolithic inductors using conformal meshing for reduced computation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sanderson, D.I. ; IBM Semicond. R&D Center, East Fishkill, NY, USA ; Rautio, J.C. ; Groves, R.A. ; Raman, S.

Accurate component modeling is a key factor to successful wireline and wireless circuit design in Si/SiGe BiCMOS and RF CMOS. This article presents the application of two planar electromagnetic simulation methods for reducing the memory and computation time requirement for accurate simulation of inductors fabricated with thick analog metal layers. First, a conformal subsectioning technique is briefly discussed in the context of reducing the numerical complexity of octagonal and circular spiral inductor analysis. Second, this article discusses a method for determining if more than a two-sheet model of thick metals is needed for accurate inductor simulation. Finally, the conformal mesh is applied to a 3.3-nH inductor fabricated using the IBM 0.13-μm RF CMOS process technology. The simulated and measured results are compared.

Published in:

Microwave Magazine, IEEE  (Volume:4 ,  Issue: 4 )