By Topic

MAPGEN: mixed-initiative planning and scheduling for the Mars Exploration Rover mission

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

13 Author(s)
Ai-Chang, M. ; NASA Ames Res. Center, Moffett Field, CA, USA ; Bresina, J. ; Charest, L. ; Chase, A.
more authors

The Mars Exploration Rover mission is one of NASA's most ambitious science missions to date. Launched in the summer of 2003, each rover carries instruments for conducting remote and in site observations to elucidate the planet's past climate, water activity, and habitability. Science is MER's primary driver, so making best use of the scientific instruments, within the available resources, is a crucial aspect of the mission. To address this criticality, the MER project team selected MAPGEN (mixed initiative activity plan generator) as an activity-planning tool. MAPGEN combines two existing systems, each with a strong heritage: the APGEN activity-planning tool from the Jet Propulsion Laboratory and the Europa planning and scheduling system from NASA Ames Research Center. We discuss the issues arising from combining these tools in this mission's context. MAPGEN is the first AI-based system to control a space platform on another planet's surface.

Published in:

Intelligent Systems, IEEE  (Volume:19 ,  Issue: 1 )