By Topic

An eigenspace projection clustering method for inexact graph matching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
T. Caelli ; Dept. of Comput. Sci., Alberta Univ., Edmonton, Alta., Canada ; S. Kosinov

In this paper, we show how inexact graph matching (that is, the correspondence between sets of vertices of pairs of graphs) can be solved using the renormalization of projections of the vertices (as defined in this case by their connectivities) into the joint eigenspace of a pair of graphs and a form of relational clustering. An important feature of this eigenspace renormalization projection clustering (EPC) method is its ability to match graphs with different number of vertices. Shock graph-based shape matching is used to illustrate the model and a more objective method for evaluating the approach using random graphs is explored with encouraging results.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:26 ,  Issue: 4 )