By Topic

Human-following mobile robot in a distributed intelligent sensor network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Morioka, K. ; Inst. of Ind. Sci., Univ. of Tokyo, Japan ; Joo-Ho Lee ; Hashimoto, H.

The robots that will be needed in the near future are human-friendly robots that are able to coexist with humans and support humans effectively. To realize this, humans and robots need to be in close proximity to each other as much as possible. Moreover, it is necessary for their interactions to occur naturally. It is desirable for a robot to carry out human following, as one of the human-affinitive movements. The human-following robot requires several techniques: the recognition of the target human, the recognition of the environment around the robot, and the control strategy for following a human stably. In this research, an intelligent environment is used in order to achieve these goals. An intelligent environment is a space in which many sensors and intelligent devices are distributed. Mobile robots exist in this space as physical agents providing humans with services. A mobile robot is controlled to follow a walking human using distributed intelligent sensors as stably and precisely as possible. The control law based on the virtual spring model is proposed to mitigate the difference of movement between the human and the mobile robot. The proposed control law is applied to the intelligent environment and its performance is verified by the computer simulation and the experiment.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:51 ,  Issue: 1 )