By Topic

Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chwei-Sen Wang ; Dept. of Electr. & Comput. Eng., Auckland Univ., New Zealand ; Covic, G.A. ; Stielau, O.H.

Loosely coupled inductive power transfer (LCIPT) systems are designed to deliver power efficiently from a stationary primary source to one or more movable secondary loads over relatively large air gaps via magnetic coupling. In this paper, a general approach is presented to identify the power transfer capability and bifurcation phenomena (multiple operating modes) for such systems. This is achieved using a high order mathematical model consisting of both primary and secondary resonant circuits. The primary compensation is deliberately designed to make the primary zero phase angle frequency equal the secondary resonant frequency to achieve maximum power with minimum VA rating of the supply. A contactless electric vehicle battery charger was used to validate the theory by comparing the measured and calculated operational frequency and power transfer. For bifurcation-free operation, the power transfer capability and controllability are assured by following the proposed bifurcation criteria. Where controllable operation within the bifurcation region is achievable, a significant increase in power is possible.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:51 ,  Issue: 1 )