By Topic

High-speed sensing techniques for ultrahigh-speed SRAMs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)
Nambu, H. ; Hitachi Ltd., Tokyo, Japan ; Kanetani, K. ; Idei, Y. ; Homma, N.
more authors

Two high-speed sensing techniques suitable for ultrahigh-speed SRAMs are proposed. These techniques can reduce a 64-kb SRAM access time to 71~89% of that of conventional high-speed bipolar SRAMs. The techniques use a small CMOS memory cell instead of the bipolar memory cell that has often been used in conventional bipolar SRAMs for cache and control memories of mainframe computers. Therefore, the memory cell size can also be reduced to 26~43% of that of conventional cells. A 64-kb SRAM fabricated with one of the sensing techniques using 0.5-μm BiCMOS technology achieved a 1.5-ns access time with a 78-μm2 memory cell size. The techniques are especially useful in the development of both ultrahigh-speed and high-density SRAMs, which have been used as cache and control memories of mainframe computers

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:27 ,  Issue: 4 )