By Topic

Vibrational properties of boron-nitride nanotubes: effects of finite length and bundling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wirtz, L. ; Dept. of Mater. Phys., Univ. of the Basque Country, Donostia-San Sebastian, Spain ; Rubio, Angel

We present ab initio calculations of phonons in single-wall boron-nitride (BN) nanotubes. Raman and infrared (IR) active modes of isolated and infinitely long tubes are evaluated according to the nonsymmorphic rod groups of BN nanotubes. For tubes of finite length, the selection rules are less restrictive and give rise to additional modes, which may be observed in Raman and IR spectroscopy with an intensity depending on the tube length. Bundling of tubes is shown to have little effect on the phonon frequencies. However, arranging tubes in a large periodic array (larger than the wavelength of incoming light) gives rise to a strong frequency shift (longitudinal-optical-transverse-optical splitting) of certain modes due to the establishing of a macroscopic electric field. Modes of A1 symmetry experience a shift for laser light along the tube axis and E1 modes are split for light incidence in the perpendicular direction.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:2 ,  Issue: 4 )