By Topic

Hybrid silicon nanocrystal silicon nitride dynamic random access memory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Steimle, R.F. ; Adv. Products R&D Labs., Austin, TX, USA ; Sadd, M. ; Muralidhar, R. ; Rajesh Rao
more authors

This paper introduces a silicon nanocrystal-silicon nitride hybrid single transistor cell for potential dynamic RAM (DRAM) applications that stores charge in silicon nanocrystals or a silicon nitride charge trapping layer or both. The memory operates in the direct tunneling regime for the tunnel oxide and so presents the possibility of a DRAM with good cycling endurance. The silicon nanocrystals of this hybrid device present intermediate states that facilitate tunneling transport to and from the nitride layer. Short time measurements show that the hybrid silicon nanocrystal silicon nitride based DRAM cell programs and erases much faster than a plain SONOS implementation while offering better data retention, memory signal and longer refresh time than a silicon nanocrystal type DRAM.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:2 ,  Issue: 4 )