Cart (Loading....) | Create Account
Close category search window
 

Silicon single electron transistors with SOI and MOSFET structures: the role of access resistances

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Jehl, X. ; Departement de Recherche Fondamentale sur la Matiere Condensee, CEA-Grenoble, Grenoble, France ; Sanquer, M. ; Bertrand, G. ; Guegan, G.
more authors

Coulomb blockade has been widely reported in silicon and metallic structures without intentional tunnel barriers. In particular, a simple constriction in silicon-on-insulator (SOI) allows to build a three-terminal silicon single-electron transistor (SET) operating at moderate temperature. The key parameters are the access resistances confining the electrons and the size of the gate-channel overlap, which sets the Coulomb energy. Thin films of doped silicon with sheet resistance of a few tens of h/e2 are well suited for fabricating optimized access resistances. Low doped extensions with typical resistivity 1000 Ωμm (at 300 K) are also good candidates. We illustrate this MOS-SET principle in SOI constriction and standard MOSFET of similar size. Although relying on different concepts, the ultimate MOSFET and MOS-SET are shown to be technologically close, differing mostly by the ratio between the channel resistance over the access resistance. Because this ratio is decreasing as the gate length shrinks, single electron effects should become more and more important at high temperature in the subthreshold regime of standard field effect transistor devices.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:2 ,  Issue: 4 )

Date of Publication:

Dec. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.