By Topic

Ambipolar Coulomb blockade characteristics in a two-dimensional Si multidot device

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Nuryadi, R. ; Res. Inst. of Electron., Shizuoka Univ., Hamamatsu, Japan ; Ikeda, Hiroya ; Ishikawa, Y. ; Tabe, M.

A two-dimensional Si multidot channel field-effect transistor is fabricated from a silicon-on-insulator material and the electrical characteristics are studied. The multidots are formed using a nanometer-scale local oxidation of Si process developed in our laboratory. The device shows ambipolar characteristics because of Schottky source and drain, i.e., the carriers are electrons for positive gate voltage and holes for the negative one. It is shown that Coulomb blockade (CB) oscillations are clearly observed for both of the electrons and holes at measurement temperatures up to 60 K. Both CB characteristics show nonperiodic oscillation and an open Coulomb diamond. These features are ascribed to the single electron/hole tunneling in the Si multidot channel.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:2 ,  Issue: 4 )