By Topic

A new model for including discrete dopant ions into Monte Carlo simulations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. M. Ramey ; Dept. of Electr. Eng., Arizona State Univ., Tempe, AZ, USA ; D. K. Ferry

A new method for including discrete dopants into Monte Carlo device simulation is presented. The method uses a molecular dynamics treatment of the electron-electron and electron-ion interaction that includes quantum mechanical effects via an effective potential. Modeling the positive ions with an effective potential results in an energy minimum of 50.7 meV at the positive ion, which correlates well to common donor energy levels in silicon. We find that the method produces the expected mobility reduction in the ID-VG characteristics of thin SOI MOSFETs.

Published in:

IEEE Transactions on Nanotechnology  (Volume:2 ,  Issue: 4 )