Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

An efficient and scalable algorithm for clustering XML documents by structure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wang Lian ; Dept. of Comput. Sci. & Inf. Syst., Hong Kong Univ., China ; Cheung, D.W.-L. ; Nikos Mamoulis ; Siu-Ming Yiu

With the standardization of XML as an information exchange language over the Internet, a huge amount of information is formatted in XML documents. In order to analyze this information efficiently, decomposing the XML documents and storing them in relational tables is a popular practice. However, query processing becomes expensive since, in many cases, an excessive number of joins is required to recover information from the fragmented data. If a collection consists of documents with different structures (for example, they come from different DTDs), mining clusters in the documents could alleviate the fragmentation problem. We propose a hierarchical algorithm (S-GRACE) for clustering XML documents based on structural information in the data. The notion of structure graph (s-graph) is proposed, supporting a computationally efficient distance metric defined between documents and sets of documents. This simple metric yields our new clustering algorithm which is efficient and effective, compared to other approaches based on tree-edit distance. Experiments on real data show that our algorithm can discover clusters not easily identified by manual inspection.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:16 ,  Issue: 1 )